Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biomolecules & Therapeutics ; : 384-391, 2021.
Artigo em Inglês | WPRIM | ID: wpr-889597

RESUMO

Currently, the expanding recreational use of synthetic cannabinoids (SCBs) threatens public health. SCBs produce psychoactive effects similar to those of tetrahydrocannabinol, the main component of cannabis, and additionally induce unexpected pharmacological side effects. SCBs are falsely advertised as legal and safe, but in reality, SCB abuse has been reported to cause acute intoxication and addictive disorders. However, because of the lack of scientific evidence to elucidate their dangerous pharmacological effects, SCBs are weakly regulated and continue to circulate in illegal drug markets. In the present study, the intravenous self-administration (IVSA) paradigm was used to evaluate the abuse potential of three SCBs (AM-1248, CB-13, and PB-22) in rats. All three SCBs maintained IVSA with a large number of infusions and active lever presses, demonstrating their reinforcing effects.The increase of active lever presses was particularly significant during the early IVSA sessions, indicating the reinforcementenhancing effects of the SCBs (AM-1248 and CB-13). The number of inactive lever presses was significantly higher in the SCB groups (AM-1248 and CB-13) than that in the vehicle group, indicating their impulsive effects. In summary, these results demonstrated that SCBs have distinct pharmacological properties and abuse potential.

2.
Biomolecules & Therapeutics ; : 384-391, 2021.
Artigo em Inglês | WPRIM | ID: wpr-897301

RESUMO

Currently, the expanding recreational use of synthetic cannabinoids (SCBs) threatens public health. SCBs produce psychoactive effects similar to those of tetrahydrocannabinol, the main component of cannabis, and additionally induce unexpected pharmacological side effects. SCBs are falsely advertised as legal and safe, but in reality, SCB abuse has been reported to cause acute intoxication and addictive disorders. However, because of the lack of scientific evidence to elucidate their dangerous pharmacological effects, SCBs are weakly regulated and continue to circulate in illegal drug markets. In the present study, the intravenous self-administration (IVSA) paradigm was used to evaluate the abuse potential of three SCBs (AM-1248, CB-13, and PB-22) in rats. All three SCBs maintained IVSA with a large number of infusions and active lever presses, demonstrating their reinforcing effects.The increase of active lever presses was particularly significant during the early IVSA sessions, indicating the reinforcementenhancing effects of the SCBs (AM-1248 and CB-13). The number of inactive lever presses was significantly higher in the SCB groups (AM-1248 and CB-13) than that in the vehicle group, indicating their impulsive effects. In summary, these results demonstrated that SCBs have distinct pharmacological properties and abuse potential.

3.
Biomolecules & Therapeutics ; : 363-372, 2019.
Artigo em Inglês | WPRIM | ID: wpr-763027

RESUMO

Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4′-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4′-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4′-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4′-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4′-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4′-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4′-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.


Assuntos
Apoptose , Caspase 3 , Caspase 9 , Catalase , Morte Celular , Glutationa , Glicogênio Sintase , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno , L-Lactato Desidrogenase , Malondialdeído , Neurônios , Oxidopamina , Doença de Parkinson , Fosfatidilinositol 3-Quinases , Fosfotransferases , Proteínas Quinases , Glycine max , Superóxido Dismutase , Tirosina 3-Mono-Oxigenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA